Google

Sorting in database

Guest lecture CS564 - UW Madison

Thanh Do (Google Inc.)

About me

First boss at UW

Second boss at Microsoft GSL

Current boss at
Google

Why are we learning sorting in database?

Why are we learning sorting in database?

"Computer manufacturers of the 1960's estimated that more than 25 percent of the running time of their computers was spent on sorting, when all their customers were taken into account. In fact, there were many installations in which the task of sorting was responsible for more than half of the computing time. From these statistics we may conclude that either

1. There are many important applications of sorting, or
2. Many people sort when they shouldn't, or
3. Inefficient sorting algorithms have been in common use."

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 3
Sorting and Searching
Second Edition

DONALD E. KNUTH

Why are we learning on sorting?

"Computer manufacturers of the 1960's estimated that more than 25 percent of the running time of their computers was spent on sorting, when all their customers were taken into account. In fact, there were many installations in which the task of sorting was responsible for more than half of the computing time. From these statistics we may conclude that either 1. There are many important applications of sorting, or Z. Many people sort when they shouldn't, or
3. Inefficient sorting algorithms have been in common use."

THE CLASSIC WORK

NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 3
Sorting and Searching
Second Edition

DONALD E. KNUTH

Agenda

- Use-cases of sorting in data processing
- In-memory sort - run generation
- External merge sort
- Parallel sort

The sorting problem: sort key is a single integer

Unsorted input

918
170
897
275
563

Sorted output
170
275
563
897
918

The sorting problem

Unsorted input

918, CA, 90245, Smith
170, CA, 90345, Jane
897, WI, 53713, Will
275, WI, 53705, Kate
563, CA, 90245, Andy
990, CA, 90001, Jane

Sorted output by name, zip code, phone number

563, CA, 90245, Andy
990, CA, 90001, Jane
170, CA, 90345, Jane
275, WI, 53705, Kate
918, CA, 90245, Smith
897, WI, 53713, Will

Sorted output by zip code, name, phone number

275,	WI, 53705, Kate
897,	WI, 53713, Will
990,	CA, 90001, Jane
918,	CA, 90245, Andy
918,	CA, 90245, Smith
170,	CA, 90345, Jane

Sort keys are composite, depending on what you want to slice

Use-cases of sorting

- Index creation

More efficient to sort the input first, then perform bulk loading to create b-tree

- Searching

If data is sorted, binary search is efficient In typical DBMS, tables are sorted by PK for fast look up

- Database operations
"order by", "distinct", "group by", top/limit, joins, set ops (the next two lectures)

Example

Unsorted input

SELECT * FROM T ORDER BY name ASC;

$563, \mathrm{CA}, 90245$,	Andy
$990, \mathrm{CA}, 90001$,	Jane
$170, \mathrm{CA}, 90345$,	Jane
$275, \mathrm{WI}, 53705$,	Kate
$918, \mathrm{CA}, 90245$,	Kate
897, WI, 53713,	Will

SELECT

DISTINCT name FROM T;

Andy
Jane
Jane
Kate
Kate
Will

Andy
Jane
Kate
Will

Algorithm:

1. Sort input by name
2. For each row:

Check if the next row has the same value, output if not

Sorting problem

- Given a set of N values, there can be $\mathrm{N}!$ permutations of these values.
- The sort output is one permutation among N ! possibility.
- Each comparison essentially cuts the permutation space in half.
- Algorithms for in-memory sort
- Quick sort
- Priority queue
- Tree of loser (see Donald Knuth, The Art of Computer programming, Volume 3)

QuickSort

Quicksort(A, $p, r)$
if $p<r$ then
$q:=$ Partition(A, p, r);
Quicksort(A, p, q - 1);
Quicksort(A, q + 1, r)

Example of partitioning

- choose pivot: 436924312189356

Example of partitioning

- choose pivot: 436924312189356
- search: 436924312189356

Example of partitioning

- choose pivot: 436924312189356
- search: 436924312189356 i

- swap: 433924312189656

Example of partitioning

- choose pivot: 436924312189356
- search: 4 36924312189356
- swap: 433924312189656
- search: 433924312189656 i

Example of partitioning

- choose pivot: 436924312189356
- search: 436924312189356
swap:
- search:
- swap:
433924312189656
433924312189656
i
j

433124312989656

Example of partitioning

- choose pivot: 436924312189356
- search: 436924312189356 i
- swap: 433924312189656
- search: 433924312189656 i j
- swap:

4 33124312989656

- search: 4 33124312989656 i j

Example of partitioning

- choose pivot: 436924312189356
- search: 436924312189356
- swap:
- search:
- swap:

4 33124312989656

- search:
- swap:

4 33124312989656

433122314989656

Example of partitioning

- choose pivot: 436924312189356
- search: 436924312189356 i
- swap:
- search:

$$
433924312189656
$$

i

- swap:

$$
433924312189656
$$

$$
\text { 4 } 33124312989656
$$

- search:
- swap:
- search:

4 33124312989656

4 33122314989656
433122314989656
j i (done)

Sort algorithms

Quick sort: the most commonly used (std:: sort)
Sort with tree-of-loser priority queues (by far the most efficient in my experience)

Notes: this is not std::priority_queue typically used in heap-sort.

Only leaf-to-root passes no root-to-leaf passes

2 candidates per node (except 1 in root)

When competing: winner moves up loser stays

Sorting with tree-of-losers priority queue (Knuth's example)

Sorting with tree-of-losers priority queue (Knuth's example)

Sorted Output

Sorting with tree-of-losers priority queue (Knuth's example)

Sorting with tree-of-losers priority queue (Knuth's example)

Sorting with tree-of-losers priority queue (Knuth's example)

Sorting with tree-of-losers priority queue (Knuth's example)

Sorted Output
Insert fence key $+\infty$ (end of input) and do a root to leave traversal

154

Sorting with tree-of-losers priority queue (Knuth's example)

Sorted Output
Insert fence key $+\infty$ (end of input) and do a root to leave traversal

Sorting with tree-of-losers priority queue (Knuth's example)

Run generation: comparison counts

Row count	QuickSort	Loser Tree	Lower bound	real/theory
1,000	11,696	8,722	$8,525.8$	1.023014
10,000	160,859	120,949	$118,477.1$	1.020864
100,000	$2,020,269$	$1,542,713$	$1,516,964.0$	1.016974
$1,000,000$	$24,133,548$	$18,687,584$	$18,491,568.6$	1.010600

Run Generation with tree-of-losers priority results into \#data comparisons much closer to lower bound theory

External Merge-Sort

- Phase one: read-sort-write cycle load M bytes in memory, sort, write to disk

Result: run size is as large as memory for quick sort (can be 2 M for replacement selection)

One-step merge If everything can be merged in one pass

- Merge all the runs and returns the merged output.
- Only eligible when M is sufficient to hold all input buffers at once.

Output

Multi-step merge: merge fan-in is 4

Merge strategy, assuming merge fan-in is 4

Can we do better?

Merge strategy, assuming merge fan-in is 4

Merge small runs first to minimize number of merge steps (and I/O)

Graceful degradation in external merge sort

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records to be written to disk for sorting?

Graceful degradation in external merge sort

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records to be written to disk for sorting?
A: Typical answer 1,010 (i.e, we spill the entire input)

Performance cliff problem:

Operation is fast when input fits in memory.
When it barely fits, the entire input is spilled, causing drastic change in performance

Graceful degradation in external merge sort

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records to be written to disk for sorting?
A: Typical answer 1,010 (i.e, we spill the entire input)

Performance cliff problem:

Operation is fast when input fits in memory.
When it barely fits, the entire input is spilled, causing drastic change in performance.

Solution: Spill as to disk as much as needed. Optimal strategy: spill only 10 records

Graceful degradation in external merge sort

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records we have to spill (write) to disk for sorting?
A: Typical answer 1,010 (i.e, we spill the entire cords)

Performance cliff problem: operation is fast when input fits in memory. When it barely fits, the entire input is spilled.

Solution: Spill as to disk as much as needed.
Optimal spilling strategy: spill only 10 records

Distributed sort

Problem: how to sort a very large amount of data that cannot fit in one machine?

Sorted Input

Shuffle data during sort: many-to-one exchange

Shuffle data during sort: many-to-many exchange

Shuffle data before sort

Other topics

Double buffering in external merge sort (see the Cow book) Normalized keys, offset-value code (see Goetz's computing survey paper on sorting) Distributed sort in real world (MapReduce, Presto, Hadoop, ...)

Q \& A

