
Confidential + ProprietaryConfidential + Proprietary

Sorting in database
Guest lecture
CS564 - UW Madison

Thanh Do (Google Inc.)

Confidential + Proprietary

About me

2

First boss at UW Second boss at
Microsoft GSL

Current boss at
Google

Confidential + Proprietary

Why are we learning
sorting in database?

3

Confidential + Proprietary 4

Confidential + Proprietary

Why are we learning sorting in database?

“Computer manufacturers of the 1960’s estimated that more than
25 percent of the running time of their computers was spent on
sorting, when all their customers were taken into account. In fact,
there were many installations in which the task of sorting was
responsible for more than half of the computing time. From
these statistics we may conclude that either
1. There are many important applications of sorting, or
2. Many people sort when they shouldn’t, or
3. Inefficient sorting algorithms have been in common use.”

5

Confidential + Proprietary

Why are we learning on sorting?

“Computer manufacturers of the 1960’s estimated that more than
25 percent of the running time of their computers was spent on
sorting, when all their customers were taken into account. In fact,
there were many installations in which the task of sorting was
responsible for more than half of the computing time. From
these statistics we may conclude that either
1. There are many important applications of sorting, or
2. Many people sort when they shouldn’t, or
3. Inefficient sorting algorithms have been in common use.”

6

Confidential + Proprietary

Agenda

● Use-cases of sorting in data processing
● In-memory sort - run generation
● External merge sort
● Parallel sort

7

Confidential + Proprietary

The sorting problem: sort key is a single integer

8

918

170

897

275

563

Unsorted input Sorted output

918

170

897

275

563

Confidential + Proprietary

The sorting problem

9

918, CA, 90245, Smith

170, CA, 90345, Jane

897, WI, 53713, Will

275, WI, 53705, Kate

563, CA, 90245, Andy

Unsorted input

990, CA, 90001, Jane

563, CA, 90245, Andy

990, CA, 90001, Jane

170, CA, 90345, Jane

275, WI, 53705, Kate

918, CA, 90245, Smith

897, WI, 53713, Will

Sorted output by name,
zip code, phone number

275, WI, 53705, Kate

897, WI, 53713, Will

990, CA, 90001, Jane

918, CA, 90245, Andy

918, CA, 90245, Smith

170, CA, 90345, Jane

Sorted output by zip code,
name, phone number

Sort keys are composite, depending on what you want to slice

Confidential + Proprietary

Use-cases of sorting

● Index creation
More efficient to sort the input first, then perform bulk loading to create b-tree

● Searching
If data is sorted, binary search is efficient
In typical DBMS, tables are sorted by PK for fast look up

● Database operations
 “order by”, “distinct”, “group by”, top/limit, joins, set ops (the next two lectures)

10

Confidential + Proprietary

Example

11

918, CA, 90245, Kate

170, CA, 90345, Jane

897, WI, 53713, Will

275, WI, 53705, Kate

563, CA, 90245, Andy

Unsorted input

990, CA, 90001, Jane

563, CA, 90245, Andy

990, CA, 90001, Jane

170, CA, 90345, Jane

275, WI, 53705, Kate

918, CA, 90245, Kate

897, WI, 53713, Will

SELECT * FROM T
ORDER BY name ASC;

Andy

Jane

Jane

Kate

SELECT
DISTINCT name
FROM T;

Algorithm:
1. Sort input by name
2. For each row:

Check if the next row
has the same value,
output if not

Kate

Will

Andy

Jane

Kate

Will

Confidential + Proprietary

Sorting problem

● Given a set of N values, there can be N! permutations of these values.
● The sort output is one permutation among N! possibility.
● Each comparison essentially cuts the permutation space in half.
● Algorithms for in-memory sort

○ Quick sort
○ Priority queue
○ Tree of loser (see Donald Knuth, The Art of Computer programming, Volume 3)

12

Confidential + Proprietary

QuickSort
Quicksort(A, p, r)

if p < r then
q := Partition(A, p, r);
Quicksort(A, p, q – 1);
Quicksort(A, q + 1, r)

5
A[p..r]

A[p..q – 1] A[q+1..r]

≤
5

≥
5

Partition 5

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j
● swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j
● swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
● search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 i j

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j
● swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
● search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 i j
● swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j
● swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
● search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 i j
● swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
● search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 i j

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j
● swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
● search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 i j
● swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
● search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 i j
● swap: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6

Confidential + Proprietary

Example of partitioning
● choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
● search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 i j
● swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
● search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 i j
● swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
● search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 i j
● swap: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6
● search: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6

 j i (done)

Confidential + Proprietary

Sort algorithms

22

Quick sort: the most commonly used (std::sort)

Sort with tree-of-loser priority queues
(by far the most efficient in my experience)

Notes: this is not std::priority_queue
typically used in heap-sort.

_

_

_ _

2
3

0
1

Only leaf-to-root passes –
no root-to-leaf passes

2 candidates per node
(except 1 in root)

When competing:
winner moves up
loser stays

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

?

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

918 ?

Unsorted
input

170

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

918 897

?

Unsorted
input

170 275

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

918 897

?

Unsorted
input

170 275

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

918 897

275

Unsorted
input

170

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

918 897 563 154

275 426

?170 154

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 154 509

918 897 563 509

275 426

170

154
Sorted Output

Unsorted
input

State of the tree after
initial seeding for N
one-row input streams

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 _ 509

918 897 563 509

275 426

170

_
Sorted Output

154

Unsorted
input

How do we fix the tree?

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 +∞ 509

918 897 563 509

275 426

170

_
Sorted Output

154Insert fence key +∞ (end of
input) and do a root to
leave traversal

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 +∞ 509

918 897 563 509

275 426

170

_
Sorted Output

154Insert fence key +∞ (end of
input) and do a root to
leave traversal

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 +∞ 509

918 897 563 +∞

275 426

170

_
Sorted Output

154

509

Insert fence key +∞ (end of
input) and do a root to
leave traversal

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 +∞ 509

918 897 563 +∞

275 509

170

_
Sorted Output

154

426

Insert fence key +∞ (end of
input) and do a root to
leave traversal

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 170 897 275 563 426 +∞ 509

918 897 563 +∞

275 509

426

170
Sorted Output

154Insert fence key +∞ (end of
input) and do a root to
leave traversal

Unsorted
input

Confidential + Proprietary

Sorting with tree-of-losers priority queue (Knuth’s example)

918 +∞ 897 275 563 426 +∞ 509

918 897 563 +∞

275 509

426

_
Sorted Output

154 170

Unsorted
input

Confidential + Proprietary

Run generation: comparison counts

37

Row count QuickSort Loser Tree Lower bound real/theory
1,000 11,696 8,722 8,525.8 1.023014

10,000 160,859 120,949 118,477.1 1.020864
100,000 2,020,269 1,542,713 1,516,964.0 1.016974

1,000,000 24,133,548 18,687,584 18,491,568.6 1.010600

Run Generation with tree-of-losers priority results into
#data comparisons much closer to lower bound theory

Confidential + Proprietary

External Merge-Sort

● Phase one: read-sort-write cycle load M bytes in memory, sort, write to disk

○ Result: run size is as large as memory for quick sort (can be 2M for replacement selection)

M bytes of main memory
Disk

. . .M/R records
Input data

Confidential + Proprietary

One-step merge
If everything can be merged in one pass

● Merge all the runs and returns the merged output.

● Only eligible when M is sufficient to hold all input buffers at once.

M bytes of main memory

Output

Disk

. . .
Input M/B

Input 1

Input 2
. . . .

Output

Confidential + Proprietary

Multi-step merge: merge fan-in is 4

40

Disk Disk

No need to write to disk,
merge directly to output

Confidential + Proprietary

Merge strategy, assuming merge fan-in is 4

41

Merge to output

Can we do better?

Merge to outputLess I/O

Confidential + Proprietary

Merge strategy, assuming merge fan-in is 4

42

Merge to output

Merge small runs first to minimize number of merge steps (and I/O)

Confidential + Proprietary

Graceful degradation in external merge sort

43

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records to be written to disk for sorting?

Confidential + Proprietary

Graceful degradation in external merge sort

44

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records to be written to disk for sorting?
A: Typical answer 1,010 (i.e, we spill the entire input)

Performance cliff problem:
Operation is fast when input fits in memory.
When it barely fits, the entire input is spilled, causing drastic change in performance

Confidential + Proprietary

Graceful degradation in external merge sort

45

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records to be written to disk for sorting?
A: Typical answer 1,010 (i.e, we spill the entire input)

Performance cliff problem:
Operation is fast when input fits in memory.
When it barely fits, the entire input is spilled, causing drastic change in performance.

Solution: Spill as to disk as much as needed. Optimal strategy: spill only 10 records

Confidential + Proprietary

Graceful degradation in external merge sort

46

Example:
Input size: 1,010 records
Memory size: 1,000 records
Q: How much many records we have to spill (write) to disk for sorting?
A: Typical answer 1,010 (i.e, we spill the entire cords)

Performance cliff problem: operation is fast when input fits in memory. When it
barely fits, the entire input is spilled.

Solution: Spill as to disk as much as needed.
Optimal spilling strategy: spill only 10 records

Confidential + Proprietary

Distributed sort

Problem: how to sort a very large amount of data that cannot fit in one machine?

47

Unsorted Input

Sorted Input

Confidential + Proprietary

Shuffle data during sort: many-to-one exchange

48

Unsorted Input

Sorted Input

Sort Sort Sort Sort

Merge
Similar to external merge sort
But input is sent across network
But same maximum fan-in
problem though ...

Confidential + Proprietary

Shuffle data during sort: many-to-many exchange

49

Unsorted Input

Sorted Input

Sort Sort Sort Sort

Merge Merge

Dynamic partitioning

A .. M N .. Z

A M N Z

Confidential + Proprietary

Shuffle data before sort

50

Unsorted Input

Sorted Input

Partitioning

A Z A Z A Z

Partitioning Partitioning

A K L R S Z

Sort Sort Sort
A K L R S Z

Confidential + Proprietary

Other topics

Double buffering in external merge sort (see the Cow book)
Normalized keys, offset-value code (see Goetz’s computing survey paper on sorting)
Distributed sort in real world (MapReduce, Presto, Hadoop, …)

51

Confidential + Proprietary

Q & A

52

