
1998-99 SQL Server 7.0 Query Processor 5

Small range

Large scans, hash join

Index search, nested loops join

Large range

Need for cost-based optimization



1998-99 SQL Server 7.0 Query Processor 31

Integrated hashing operation

A single hash
operation does
both grouping
and join … and
saves time

Join

Grouping

Integrated operation



1998-99 SQL Server 7.0 Query Processor 36

Hash team root & member

No overflow files or I/O costs for intermediate result due to team



1998-99 SQL Server 7.0 Query Processor 38

Index intersection

One table, four predicates, four indexes exploited



1998-99 SQL Server 7.0 Query Processor 40

After joining two indexes of one table, all required columns 
are present – expensive record fetching is avoided

Multiple indexes covering a query



1998-99 SQL Server 7.0 Query Processor 48

Nested query becomes semi-join

Exploit join
algorithms
designed for
large inputs



1998-99 SQL Server 7.0 Query Processor 51

Multiple optimization techniques are needed to find this plan
 Join clause inferred between line item & part supply
 Group-by list reduced by functional dependencies
 Grouping (on alternative column) pushed down through join
 “Interesting orderings” between scans, joins, grouping



1998-99 SQL Server 7.0 Query Processor 52

Multiple optimization techniques in a hash-based plan
Same as previous example, plus
 Integrated hash operation …
 … within a hash team
 Disk-order scans



1998-99 SQL Server 7.0 Query Processor 56

Star joins: Cartesian products

Cartesian product of two
dimension tables prior to
join with the fact table

Let the large fact table participate in fewer joins –
reduce star join cost without any query plan hints!



1998-99 SQL Server 7.0 Query Processor 57

Star joins: semi-join reduction

First, join each dimension table 
with an index of the fact table;
then, intersect bookmark lists;
finally, fetch fact table rows

All star join technologies now also in SQL Server!


