
CS 564, Fall 2019
Assignment 3 - B+ Tree Index Manager

Due Date: October 20, 2019 by 11:59PM
Project Grade Weight: 20% of the total grade

Logistics
The B+ Tree Index Manager is coded in C++ and runs on Linux machines. Here are a few logistical points:

● Platform: We plan to compile and test your submission on the CS department’s snares-XX.cs.wisc.edu

Linux machines. We will use the default g++ compiler on those machines (v. 7.4.0). You are free to develop

on other platforms, but you make sure that your project works with the official configuration.

● Warnings: One of the strengths of C++ is that it does compile time code checking (consequently reducing

run-time errors). Try to take advantage of this feature by turning on as many compiler warnings as possible.

The Makefile that we will supply has -Wall on as default.

● Software Engineering: A large project such as this requires significant design effort. Spend some time

thinking before you start writing code. It is also a good idea to write your tests before you code!

● Development: Because of the number of classes involved in the B+ Tree, it is suggested to use an IDE to

develop this program. If you’re having trouble getting set up with CLion or a different IDE, come see the

TAs in office hours (sooner rather than later).

Introduction
As discussed in class, relations (tables) are stored in files. Each file has a particular organization. Each

organization lends itself to efficient evaluation of some (not all) of the following operations: scan, equality

search, range search, insertion, and deletion. When it is important to access a relation quickly in more than one

way, a good solution is to use an index. For this assignment, the index will store data entries in the form <key,

rid> pair. These data entries in the index will be stored in a file that is separate from the data file. In other

words, the index file “points to” the data file where the actual records are stored. We will store our index file in

a data structure that’s efficient and simple to access, namely the ubiquitous B+ Tree index.

To help get you started, we will provide you with an implementation of the following new classes: PageFile,

BlobFile, and FileScan.

The PageFile and BlobFile classes are derived from the File class and both are declared in file.cpp. These

classes implement a file interface in two different ways. The PageFile class implements the file interface for

the File class and is the traditional representation of a system file containing pages. Hence, we use the

PageFile class to store all the relations in our program.

The BlobFile class implements the file interface for a file organization in which the pages in the file are not

linked by prevPage/ nextPage links, as they are in the case of the PageFile class. When reading/writing pages,

the BlobFile class treats the pages as blobs of size 8KB and hence does not require these pages to be valid

objects of the Page class. We will use the BlobFile class to store the B+ index file, where every page in the

file is a node from the B+ tree. Since no other class requires BlobFile pages to be valid objects of the Page

class, we can modify these pages to suit the particular needs of the B+ tree index. Inside the file btree.cpp you

will treat the pages from a BlobFile as your B+ tree index nodes, and the BlobFile class will read/write pages

for you from disk without modifying/using them in any way. BufMgr class has also been changed so that it does

not use page objects to determine their page numbers.

FileScan Class
The FileScan class is used to scan records in a file. We will use this class for the “base” relation, and not for

the index file. The file main.cpp file contains code which shows how to use this class.

The public member functions of this class are described below.

● FileScan(const std::string &name, BufMgr *bufferMgr)

The constructor takes the relation name and buffer manager instance as parameters. The methods described

below are then used to scan the relation.

● ~FileScan()

Shuts down the scan and unpins any pinned pages.

● void scanNext(RecordId& outRid)

Returns (via the outRid parameter) the RecordId of the next record from the relation being scanned. It

throws EndOfFileException() when the end of relation is reached.

● std::string getRecord()

Returns a pointer to the “current” record. The record is the one in a preceding scanNext() call.

● void markDirty()

Marks the current page being scanned as dirty, in case the page was being modified (you don’t need this for

this assignment, but the method is here for completeness).

B+ Tree Index
Your assignment is to implement a B+ Tree index. This B+ Tree will be simplified in the following four ways:

1. First, you can assume that all records in a file have the same length (so for a given attribute its offset in the

record is always the same).

2. Second, the B+ tree only needs to support single-attribute indexing; i.e., not a composite attribute where the

key has more than one attribute, such as a pair (age, zipcode).

3. Third, the indexed attribute may be only one data type: integer.

4. Finally, you can assume that we will never insert two data entries into the index with the same key value.

This last part simplifies the B+ tree implementation (think about why).

The index will be built directly on top of the I/O Layer (the BlobFile and the Page classes). An index will need

to store its data in a file on disk, and the file will need a name (so that the DB class can identify it). The

convention for naming an index file is specified below. To create a disk image of the index file, you simply use

the BlobFile constructor with the name of the index file. The file that you create is a “raw” file, i.e. it has no

page structure on top of it. You will need to implement a structure on top of the pages that you get from the I/O

Layer to implement the nodes of the B+ tree. Note the PageFile class that we provide superimposes a page

structure on the “raw” page. Just as the File class uses the first page as a header page to store the meta-data for

that file, you will dedicate a header page for the B+ tree file too for storing meta-data of the index.

We’ll start you off with an interface for a class, BTreeIndex. You will need to implement the methods of this

interface as described below. You may (and should for organization) add new public methods to this class, but

you should not modify the interfaces that are described here:

● BTreeIndex

The constructor first checks if the specified index file exists. An index file name is constructed as:

concatenating the relational name with the offset of the attribute over which the index is built. The general

form of the index file name is “ relName.attrOffset”. The code for constructing an index name is shown

below.

If the index file exists, then the file is opened. Else, a new index file is created.

The inputs to this constructor function are:

const string &

relationName
The name of the relation on which to build the index. The constructor should scan

this relation (using FileScan) and insert entries for all the tuples in this relation into

the index. You can insert an entry one-by-one, i.e. don’t worry about implementing

a bottom-up bulkloading index construction mechanism.

String &

outIndexName

The name of the index file; determine this name in the constructor as shown above,

and return the name.

BufMgr *bufMgrIn The instance of the global buffer manager.

const int

attrByteOffset

The byte offset of the attribute in the tuple on which to build the index. For

instance, say we are storing the following structure as a record in the original

relation:

struct RECORD {

 double d;

 int i;

 char s[64];

};

Then, if we build the index over the int i, then the attrByteOffset value is 0 +
offsetof(RECORD, i), where offsetof is the offset position provided by the

standard C++ library “offsetof”.

const Datatype

attrType

The data type of the attribute we are indexing. Note that the Datatype enumeration

{ INTEGER, DOUBLE, STRING} is defined in the file btree.h. Since we will only

index on integer attributes, this will always be used as type integer.

● ~BTreeIndex

The destructor. Perform any cleanup that may be necessary, including clearing up any state variables,

unpinning any B+ tree pages that are pinned, and flushing the index file (by calling the function

bufMgr->flushFile()). Note that this method does not delete the index file! But, deletion of the file

object is required, which will call the destructor of File class causing the index file to be closed.

● insertEntry

This method inserts a new entry into the index using the pair <key, rid>.

The inputs to this function are:

const void *key A pointer to the value (integer) we want to insert.

const RecordId rid The corresponding record id of the tuple in the base relation.

● startScan

This method is used to begin a “filtered scan” of the index. For example, if the method is called using

arguments (1, GT, 100, LTE), then the scan should seek all entries greater than 1 and less than or

equal to 100.

The inputs to this function are:

const void*

lowValue

The low value to be tested.

const Operator

lowOp

The operation to be used in testing the low range. You should only support GT

and GTE here; anything else should throw BadOpcodesException. Note that

the Operator enumeration is defined in btree.h.
const void*

highValue

The high value to be tested.

const Operator

highOp

The operation to be used in testing the high range. You should only support LT

and LTE here; anything else should throw BadOpcodesException.

Both the high and the low values are in a binary form, i.e. for integer keys, these point to the address of

an integer.

If lowValue > highValue, throw the exception BadScanrangeException.

● scanNext

This method fetches the record id of the next tuple that matches the scan criteria. If the scan has reached

the end, then it should throw the exception IndexScanCompletedException. For instance, if there are

two data entries that need to be returned in a scan, then the third call to scanNext must throw

IndexScanCompletedException. A leaf page that has been read into the buffer pool for the purpose of

scanning, should not be unpinned from buffer pool unless all the records from it are read, or the scan has

reached its end. Use the right sibling page number value from the current leaf to move to the next leaf

which holds successive key values for the scan.

The input to this function is:

RecordId&

outRid

An output value; this is the record id of the next entry that matches the scan filter

set in startScan.

● endScan

This method terminates the current scan and unpins all the pages that have been pinned for the purpose

of the scan. It throws ScanNotInitializedException when called before a successful startScan call.

Additional Notes
1. When you implement these methods, you will need to call upon the buffer pool to read/write pages. Make

sure that you do not keep the pages pinned in the buffer pool unless you need to. If you keep some pages

pinned, make sure that you have a good reason.

2. For the scan methods, you will need to remember the “state” of the scan specified during the startScan

call. Use the appropriate member variables in the BTreeIndex class to remember this state. Make sure that

you reset these state variables in the endScan and the destructor.

3. The insert algorithm does not need to redistribute entries, i.e. always prefer splits over key redistribution

during inserts (it is easier to implement inserts this way too).

4. At the leaf level, you do not need to store pointers to both siblings. The leaf nodes only point to the “next”

(the right) sibling.

5. The constructor and destructor should not throw any exceptions.

6. In real B+ tree implementations when an error occurs, special care is taken to make sure that the index does

not end up in an inconsistent state. As you will quickly realize, handling errors can be hard in some cases.

For example, if you have split a leaf page and are propagating the split upwards, and then encounter a buffer

manager error, exiting the method without cleaning up can corrupt the B+ tree structure. To keep the

assignment simple, don’t worry about this type of cleanup, simply return the error code. However, make

sure that you do not artificially create such problems by incorrectly using the other components of

BadgerDB. For example, if you keep pages pinned in memory unnecessarily, you will quickly encounter a

buffer exceeded exception. We will not test your implementation with very small buffer pool sizes (such as

1 or 2 pages). If it makes your implementation easier, you may assume that you have enough free buffer

pages to hold 1-2 pages from each level of the index. But UNPIN THE PAGES as soon as you can.

Your Assignment
Start by copying the files from the following url:

 http://pages.cs.wisc.edu/~klassy/courses/564/P3_BTree/p3_Btree.tar.gz

After extracting this directory, you will find the files listed below. Follow these instructions to complete your

assignment. This directory contains the following files that are relevant to this part of the project (in addition to

other files which were created while developing the lower layers):

btree.h Add your own methods and structures as you see fit but don’t modify the public methods

that we have specified.

btree.cpp Implement the methods we specified and any others you choose to add.

file.h(cpp) Implements the PageFile and BlobFile classes.

main.cpp Use to test your implementation. Add your own tests here or in a separate file. This file

has code to show how to use the FileScan and BTreeIndex classes.

page.h(cpp) Implements the Page class.

buffer.h(cpp),

bufHashTbl.h(cpp)

Implementation of the buffer manager.

http://pages.cs.wisc.edu/~klassy/courses/564/P3_BTree/p3_Btree.tar.gz

exceptions/* Implementation of exception classes that you might need.

Makefile makefile for this project.

Please do not create any additional files.

In addition to the btree source files, you must also turn in new test cases that you wrote to test your B+ tree

index. There is not a minimum number of tests that you must write. However, you should also keep in mind that

test design is 15% of your grade, so your tests should try to be as comprehensive as possible.

Submitting Your Assignment
To hand in your work, please go to the Canvas: Assignment 3 B+ Tree page to upload your files. Your

submission should include the source code and new test cases. Your new test cases can be written in main.cpp,

or in separate file. Clearly indicate the location and what your new test cases are testing by putting in a

outline.txt file that describes your tests. Your files must be uploaded by the deadline stated on the first page.

Please follow these instructions to submit the project:

1) Name the project directory: <netID>_P3 (e.g. klklassy_P3)
2) Run: make clean from inside the directory (so that the submitted file size is small)

3) Run:

 tar -czvf <netID>_P3.tar.gz /path-to-project/<netID>_P3

4) Submit the tar file

5) To check, you can uncompress the tar file (run: tar -xzvf <netID>_P3.tar.gz) You should see the

Makefile, outline.txt, and all the source code files inside the untarred directory. If you do not adhere to

this standard, you risk losing all the test points, as our test driver will fail. Since we are supposed to be

able to test your code with any valid driver, it is important to be faithful to the exact definitions of the

interfaces that are specified here.

Grading
The breakdown of the grading for this assignment is as follows:

1. Correctness – 80%: The correctness part of the grade will be based on the tests that we have provided, and

additional (more rigorous) tests that we will run on your submitted projects.

2. Programming Style - 5% : For your style points, we will check your code for readability (how easy is it to

read and understand the code), and for the code organization (do you repeat code over and over again, do

you use unnecessary globals, etc.).

3. Test design – 15% : Designing test cases that test various code paths rigorously. This will not only get you

the test points, but will most likely also get you the correctness points.

Academic Integrity

You are not allowed to share any code with other students in the class or use any code from previous offerings

of this course.

A Final Note of Caution
There are a number of design choices that you need to make, and you probably need to reserve a big chunk of

time for testing and debugging. So, start working on this assignment early – you are unlikely to finish this

project if you start just a week or so before the deadline.

