
 Page 1 of 4

CS 564, Fall 2019: Assignment 1 - Word Locator in C++
Due: September 15, 2019, at 11:59pm

Problem Description
The goal of this assignment is help you brush up your C++ programming skills, and exercise your skills in
data structure and algorithm design (the stuff that you know from CS 367). In this assignment, you are to
develop a “word locator” program written in C++, which will allow a user to check if a specified
(re)occurrence of a specified query word appears in the input text file.

Program Specification
Your program must be named “wl”. When started, your program will display a prompt “>” (printed on
stdout/cout) and will then be ready to accept one of the following commands:

1. “load <filename>”: This command loads the specified file. The file may be specified by either an
absolute or a relative pathname. Running this command should result in your program parsing and
storing the words in this file in a data structure that can be queried using the locate command
(described below). A word is defined as a sequence of upper and lower case letters in the English
alphabet (i.e. characters ‘a’ to ‘z’, and ‘A’ to ‘Z’), numbers, and the apostrophe. All other characters
are considered as white space and will therefore be treated as terminating a word. Two successive
load commands should be treated as if there is an intermediate “new” command (see below) in
between the two commands.

2. “locate <word> <n>”: This command outputs the number of the word, counting from the beginning of
the file, of the nth occurrence of the word. Word numbering starts from 1, so the first word in the load
file has a word number of 1. The locate command is case insensitive, i.e. to match the word in the
locate command with a word in the load file you should use a case-insensitive string comparison
method. If there are no matches for the locate command, print “No	matching	entry”.	
The syntax of the locate command is “locate <word> <n>”. The “<word>” parameter will have a
whitespace before and after it, and “<n>” should be an integer greater than 0.
As an example, the following are legal commands: “locate	sing	3” and “locate		sing		3”
Both locate the 3rd occurrence of “sing”, but the second command has a few additional blank spaces
around the parameter “sing”.

The following commands are not legal: “locate	sing3”, “locate	sing	3q”. The first command does not
specify a parameter <n>, and in the second command the parameter <n> is not an integer.
Please note that the command “locate	sing23	4” is a legal command for locating the fourth occurrence
of the word “sing23”.

3. “new”: This command resets the word list to the original (empty) state.

4. “end”: This command terminates the program.

Your program should respond to incorrect commands in the following ways:

● If a bad command is entered, print the precise string “ERROR:	Invalid	command”, and go to the next
prompt. Examples of bad commands are: “find	word	 7”	and “locate	 song”. Other examples of bad
command include the locate command having a word that is not legal as per the definition above.
For example “ra#s” and “rats!” are invalid word parameters.

 Page 2 of 4

● Note that if an incorrect load command is entered, such as “load”	 (no filename) then your data
structure should not be reset. In other words, if you have a previously loaded file, subsequent locate
commands should still query that previously loaded file. Similarly if the load command specifies an
invalid file name, then you should not reset the data structure. In both cases of the invalid load
command outlined above, please print the standard error message “ERROR:	Invalid	command”.1

● If there is extraneous content in the command, such as “locate	word	5	17” or “new	12”,	print out the
standard error message: “ERROR:	Invalid	command”

● All the command keywords are case insensitive, so “LoCATe sing 2” is a valid command, and should
be treated as “locate sing 2”.

Example
Given the following sample text file, sixpence.txt:

Sing	a	song	of	sixpence,	
A	pocket	full	of	rye;	
Four	and	twenty	blackbirds	
Baked	in	a	pie.	
When	the	pie	was	opened,	
They	all	began	to	sing.	
Now,	wasn’t	that	a	dainty	dish	to	set	before	the	King?	
	
The	King	was	in	the	countinghouse,	
Counting	out	his	money;	
The	Queen	was	in	the	parlor	
Eating	bread	and	honey.	
The	maid	was	in	the	garden,	
Hanging	out	the	clothes.	
Along	there	came	a	big	black	bird	
And	snipped	off	her	nose!	

The following is a sample run:

>load	sixpence.txt	
>locate	song	1	
3	
>locate	Song	1	
3	
>locate	SoNg	1	
3	
>locate	pie	1	
18	
>locate	pie	2	
21	
>locate	pie	3	
No	matching	entry	
>locate	prince	
ERROR:	Invalid	command	
>locate	prince	1	
No	matching	entry	
>new	
>locate	song	1	

1 The error handling component of this assignment has deliberately been simplified to ease the programming load. In a
real application, one should print error messages that identify the specific error and help the user in correcting their input.

 Page 3 of 4

No	matching	entry	
>end	

Format your programs responses exactly as in the above example. The programs will be graded by an
automaton, and to assure proper credit, your program must respond exactly as above. It is essential that
nothing else be output to stdout/cout. Any extraneous messages should be removed before turning in the
program. It is also expected that your program will not crash, no matter what the input is, either in the
loaded text file, or in the sequence of commands given to the program.

Getting Started
The files for this assignment are located in http://pages.cs.wisc.edu/~jignesh/cs564/projects/wc/ This
directory has the following files:

1. wl.h and wl.cpp: Empty files in which you have to add your solution code.
2. Makefile: A sample makefile.
3. sixpence.txt: A sample text file.
4. sixpence.cmd: A sample command file.
5. sixpence.out: Sample output when the command “wl < sixpence.cmd” is run.
6. wrnpc.txt: Another sample text file (sample command and outputs are not provided for this file).

Development Platform
● Platform: The stages will be compiled and tested on the CS department machines running Ubuntu

14.04 LTS Linux. See https://csl.cs.wisc.edu/services/instructional-facilities for the list of machines.
We plan to use the snares-XX.cs.wisc.edu or equivalent machines. You are free to do some
development using other platforms (or even set up a Docker on your laptop) but you must make
sure that your project works with the official configuration. If you are new to the CS environment,
you will need a CS account. See https://csl.cs.wisc.edu/services/user-accounts/about-your-
instructional-account for details.

● Warnings: One of the strengths of C++ is that it does a lot of compile time checking of the code
(consequently reducing run-time errors). Try to take advantage of this by turning on as many
compiler warnings as possible.

Your Assignment
Start by copying the files above in to your workspace. In this directory you will find all the files mentioned
above. To complete your assignment, follow the directions in the section above. You should end up with
the solution code in the files wl.h and wl.cpp (please do not create any other files). Your code should be
fully commented following the specs for Doxygen (www.doxygen.org). In other words, you should be able
to generate documentation for your code using doxygen.

Coding and Testing
Your program must be written in C++. Your coding style should have well-defined classes and clean
interfaces. The code should be well-documented. Each file should start with a header describing the
purpose of the file and should also contain your name, student id, and UW email address. The email
address must be your official UW email (not your CS address).

Testing for correctness involves more than just seeing if a few test cases produce the correct output. There
are certain types of errors (memory errors and memory leaks) that usually surface after the system has
been running for a longer period of time. You should use valgrind to isolate such errors. This can be done

Zhihan Guo

 Page 4 of 4

by simply adding “valgrind” to the command line, for example “valgrind ./wl < sixpence.cmd” You will get
a listing of memory errors in your program. If you have programmed in Java you should keep in mind that
C++ does not have automatic garbage collection, so each new must ultimately be matched by a
corresponding delete. Otherwise all the memory in the system might be used up. Valgrind can be used to
detect such “memory leaks” as well.

More information about valgrind can be found at: http://www.valgrind.org/docs/manual/index.html

In addition to the test driver that we provide, your assignment will be tested against our (more
comprehensive) test driver. You are encouraged to develop additional tests on your own.

Submitting Your Assignment
This assignment is an individual assignment. Each student must send us an individual submission.

You will submit this assignment electronically by turning in a copy of the two files -- “wl.cpp” and “wl.h”.
More details about the submission procedure will be posted at a later date.

Grading
The maximum score on this assignment is 100. For this assignment, 90% of the grade is for correctness,
10% for your programming style. We are not going to run speed tests for this assignment, as I don’t want
you to get into detailed code optimization methods. Rather the purpose of this assignment is to make sure
that you have a good algorithmic and code design in place.

The programming style points are to make sure that you follow good programming practices. Your
software should have a modular design, and should be well commented and structured so that any other
programmer can easily understand your code and design.

As for all assignments and projects in this class, there are no late days.

