
Assignment 1
Sep 6th

Zhihan Guo

Bio

• Zhihan (Scarlet) Guo
• Zhi - “G”
• Email: zhihan “at” cs.wisc.edu
• Office: 4241

Announcements
- Course Website: https://kyle-klassy.github.io/cs564-fall19/

- TA Office Hours
- Piazza
- Lecture Notes:

- Dropbox
- Assignment 1 (Due Next Sunday, Sep 15th @ 11:59PM)

- Individual
- Canvas

- Still working on it..

- Friday slides will be posted on course website

https://kyle-klassy.github.io/cs564-fall19/

TA Office Hours

Piazza
- Announcements
- Assignment Clarifications
- Q & A

DO NOT POST ANY CODE PUBLICLY:
Students may NOT publicly post any code that is part of any assigned
problem (working or otherwise). If you cannot ask your question without
including code, you must mark your question as private and visible only to
the course Instructors (which includes TAs). This will help us all avoid
unnecessary academic misconduct concerns and consequences.

Overview
- Assignment Description & Demo
- Developing Tools

- Programming Tool
- Development Platform
- Running, Testing and Debugging

- Q & A

Overview
- Assignment Description & Demo
- Code Development

- Programming Tool
- Development Platform
- Running, Testing and Debugging

- Q & A

Assignment 1: Word Locator in C++
Goal:

- help you brush up your C++ programming skills and refresh knowledge
of data structure (CS367/CS300,400)

Description:

- develop a “word locator” program written in C++, which will allow a user
to check if a specified (re)occurrence of a specified query word appears
in the input text file.

Word Locator
Given a text document, your program should be able to

- “load” the document. Scan the document ; parse and store the words in
a data structure.

Demo

>load sixpence.txtSing a song of sixpence,
A pocket full of rye;
Four and twenty blackbirds
Baked in a pie.

1 2 3 4 5

15 16 17 18

Word Locator
Given a text document, your program should be able to

- “load” the document. Scan the document ; parse and store the words in
a data structure.

- “locate” the nth occurence of a word. Given a word, return the position
of the nth occurrence of the word in the document you load.

- “new”. Reset the word list to original (empty) state.
- “end”. Terminate the program

Demo

Sing a song of sixpence,
A pocket full of rye;
Four and twenty blackbirds
Baked in a pie.

>load sixpence.txt
>locate song 1
3
>locate Song 1
3
>locate SoNg 1
3
>locate pie 1
18

1 2 3 4 5

15 16 17 18

Word Locator
Given a text document, your program should be able to

- “load” the document. Scan the document ; parse and store the words in
a data structure.

- E.e. “load sample.txt”
- “locate” the nth occurence of a word. Given a word, return the position

of the nth occurrence of the word in the document you load.
- E.g. “locate word 1”

Demo

Sing a song of sixpence,
A pocket full of rye;
Four and twenty blackbirds
Baked in a pie.

>load sixpence.txt
>locate song 1
3
>locate Song 1
3
>locate SoNg 1
3
>locate pie 1
18

1 2 3 4 5

15 16 17 18

Word Locator
Given a text document, your program should be able to

- “load” the document. Scan the document ; parse and store the words in
a data structure.

- “locate” the nth occurence of a word. Given a word, return the position
of the nth occurrence of the word in the document you load.

- “new”. Reset the word list to original (empty) state.
- “end”. Terminate the program

Demo
>load sixpence.txt
>locate song 1
3
>locate Song 1
3
>locate SoNg 1
3
>locate pie 1
18
>new
>locate song 1
No matching entry
>end

Handle Incorrect Commands (check assignment page!)

Ø If a bad command is entered, print “ERROR: Invalid command”, and go to the next
prompt.

Ø Examples of bad command

Ø Invalid command. E.g. “find word 7”

Ø Invalid words. E.g. “rats#”

Ø Extraneous content. E.g. “locate word 5 7”
Ø Other notes:

Ø if an incorrect load command is entered, such as “load” (no filename) then your data structure
should not be reset.

Ø Commands are case insensitive. “LoCaTe word 1” is a valid command.

Choices of Data Structure
● You CAN use C++ Standard Template Library (STL)

○ a set of C++ template classes to provide common programming data structures
and functions

● Use Unordered Associative Containers: unordered set, map, etc.
● Implement Tree-based Structure using containers provided by STL

Overview
- Assignment Description & Demo
- Code Development

- Programming Tool
- Development Platform
- Running, Testing and Debugging

- Q & A

Programming Tool for C++
● Check course webpage for tutorials and IDEs.

○ Additional materials: http://pages.cs.wisc.edu/~gerald/cs368/

■ Lecture notes, resources, etc.

http://pages.cs.wisc.edu/~gerald/cs368/

Development Platform
● Ubuntu 14.04 LTS Linux
● CSL Machine, need a cs account
● See Assignment Page

Zhihan Guo

Zhihan Guo
18.04

Getting Started – download files
● The files for this assignment are located in

http://pages.cs.wisc.edu/~jignesh/cs564/projects/wc/ This directory has
the following files:

● wl.h and wl.cpp: Empty files in which you have to add your solution
code.

● Makefile: A sample makefile.
● sixpence.txt: A sample text file.
● sixpence.cmd: A sample command file.
● sixpence.out: Sample output when the command “wl < sixpence.cmd” is

run.
● wrnpc.txt: Another sample text file (sample command and outputs are

not provided for this file).

http://pages.cs.wisc.edu/~jignesh/cs564/projects/wc/

Running
● Step 1: compile using provided Makefile

○ “make all”
● Step 2: run executable and enter commands

○ “./wl”

Testing
● Use provided sample commands to test and compare the output with

sample output (sixpence.out):

○ ./wl < sixpence.cmd
● Use the larger sample document (wrnpc.txt) to design your own

commands and check if the behavior is as expected.

● your assignment will be tested against our (more comprehensive) test
driver.

● You are encouraged to develop additional tests on your own.

Debugging
● As flag ‘-g’ is provided in Makefile, you can use gdb to debug your

program.

○ “gdb wl”

○ Check basic command: http://pages.cs.wisc.edu/~horwitz/gdb/gdb.ps

http://pages.cs.wisc.edu/~horwitz/gdb/gdb.ps

Documentation
● Your code should be fully commented following the specs for Doxygen

(www.doxygen.org). In other words, you should be able to generate
documentation for your code using doxygen.

● An example of the documentation generated using doxygen:

○ http://pages.cs.wisc.edu/~jignesh/cs564/projects/BadgerDB/BufMgr/docs/ann
otated.html

http://www.doxygen.org/
http://pages.cs.wisc.edu/~jignesh/cs564/projects/BadgerDB/BufMgr/docs/annotated.html

Submission
● More details about the submission procedure will be posted next week.

