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!! Exercise 20.4 .6 : Not all binary operations on relations located at different 
nodes of a network can have their execution time reduced by preliminary op­
erations like the semijoin. Is it possible to improve on the obvious algorithm 
(ship one of the relations to the other site) when the operation is (a) union
(b) intersection (c) difference?

20.5 Distributed Commit
In this section, we shall address the problem of how a distributed transaction 
that has components at several sites can execute atomically. The next section 
discusses another important property of distributed transactions: executing 
them serializably.

20.5.1 Supporting Distributed Atomicity
We shall begin with an example that illustrates the problems that might arise.

E xam ple  20.13: Consider our example of a chain of stores mentioned in Sec­
tion 20.3. Suppose a manager of the chain wants to query all the stores, find the 
inventory of toothbrushes at each, and issue instructions to move toothbrushes 
from store to store in order to balance the inventory. The operation is done 
by a single global transaction T  that has component Ti at the ith  store and 
a component T0  at the office where the manager is located. The sequence of 
activities performed by T  are summarized below:

1. Component To is created at the site of the manager.

2. To sends messages to all the stores instructing them to create components 
Ti.

3. Each Ti executes a query at store i to discover the number of toothbrushes 
in inventory and reports this number to To.

4. To takes these numbers and determines, by some algorithm we do not 
need to discuss, what shipments of toothbrushes axe desired. To then 
sends messages such as “store 10 should ship 500 toothbrushes to store 
7” to the appropriate stores (stores 7 and 10 in this instance).

5. Stores receiving instructions update their inventory and perform the ship­
ments.

□

There axe a number of things that could go wrong in Example 20.13, and 
many of these result in violations of the atomicity of T. That is, some of the 
actions comprising T  get executed, but others do not. Mechanisms such as 
logging and recovery, which we assume are present at each site, will assure that 
each Tj is executed atomically, but do not assure that T itself is atomic.



20.5. DISTRIBUTED COMMIT 1009

E xam ple 20.14: Suppose a bug in the algorithm to redistribute toothbrushes 
might cause store 10 to be instructed to ship more toothbrushes than it has. T10 
will therefore abort, and no toothbrushes will be shipped from store 10; neither 
will the inventory at store 10 be changed. However, TV detects no problems 
and commits at store 7, updating its inventory to reflect the supposedly shipped 
toothbrushes. Now, not only has T  failed to execute atomically (since Tio never 
completes), but it has left the distributed database in an inconsistent state. □

Another source of problems is the possibility that a site will fail or be dis­
connected from the network while the distributed transaction is running.

E xam ple 20.15: Suppose Tw replies to T0’s first message by telling its inven­
tory of toothbrushes. However, the machine at store 10 then crashes, and the 
instructions from To are never received by Ti0. Can distributed transaction T 
ever commit? What should Tio do when its site recovers? □

20.5.2 Two-Phase Commit
In order to avoid the problems suggested in Section 20.5.1, distributed DBMS’s 
use a complex protocol for deciding whether or not to commit a distributed 
transaction. In this section, we shall describe the basic idea behind these pro­
tocols, called two-phase commit. 5 By making a global decision about commit­
ting, each component of the transaction will commit, or none will. As usual, 
we assume that the atomicity mechanisms at each site assure that either the 
local component commits or it has no effect on the database state at that site;
i.e., components of the transaction are atomic. Thus, by enforcing the rule 
that either all components of a distributed transaction commit or none does, 
we make the distributed transaction itself atomic.

Several salient points about the two-phase commit protocol follow:

• In a two-phase commit, we assume that each site logs actions at that site, 
but there is no global log.

• We also assume that one site, called the coordinator, plays a special role 
in deciding whether or not the distributed transaction can commit. For 
example, the coordinator might be the site at which the transaction orig­
inates, such as the site of To in the examples of Section 20.5.1.

• The two-phase commit protocol involves sending certain messages be­
tween the coordinator and the other sites. As each message is sent, it is 
logged at the sending site, to aid in recovery should it be necessary.

With these points in mind, we can describe the two phases in terms of the 
messages sent between sites.

5 Do no t confuse tw o-phase com m it w ith  tw o-phase locking. T hey  are  independent ideas, 
designed to  solve different problem s.
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P h ase  I

In phase 1 of the two-phase commit, the coordinator for a distributed trans­
action T decides when to attempt to commit T. Presumably the attem pt to 
commit occurs after the component of T  at the coordinator site is ready to 
commit, but in principle the steps must be carried out even if the coordina­
to r’s component wants to abort (but with obvious simplifications as we shall 
see). The coordinator polls the sites of all components of the transaction T to 
determine their wishes regarding the commit/abort decision, as follows:

1. The coordinator places a log record <Prepare T>  on the log at its site.

2. The coordinator sends to each component’s site (in principle including 
itself) the message p repare  T.

3. Each site receiving the message p repare  T  decides whether to commit or 
abort its component of T. The site can delay if the component has not 
yet completed its activity, but must eventually send a response.

4. If a site wants to commit its component, it must enter a state called 
precommitted. Once in the precommitted state, the site cannot abort its 
component of T  without a directive to do so from the coordinator. The 
following steps are done to become precommitted:

(a) Perform whatever steps are necessary to be sure the local component 
of T  will not have to abort, even if there is a system failure followed 
by recovery at the site. Thus, not only must all actions associated 
with the local T  be performed, but the appropriate actions regarding 
the log must be taken so that T  will be redone rather than undone 
in a recovery. The actions depend on the logging method, but surely 
the log records associated with actions of the local T  must be flushed 
to disk.

(b) Place the record <Ready T>  on the local log and flush the log to 
disk.

(c) Send to the coordinator the message ready T.

However, the site does not commit its component of T  at this time; it 
must wait for phase 2.

5. If, instead, the site wants to abort its component of T, then it logs the 
record <Don’t  commit T>  and sends the message don’t  commit T to 
the coordinator. It is safe to abort the component at this time, since T  
will surely abort if even one component wants to abort.

The messages of phase 1 are summarized in Fig. 20.12.
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Figure 20.12: Messages in phase 1 of two-phase commit

P h ase II

The second phase begins when responses ready or don ’ t  commit are received 
from each site by the coordinator. However, it is possible that some site fails to 
respond; it may be down, or it has been disconnected by the network. In that 
case, after a suitable timeout period, the coordinator will treat the site as if it 
had sent don’t  commit.

1. If the coordinator has received ready T  from all components of T,  then 
it decides to commit T. The coordinator logs <Commit T>  at its site and 
then sends message commit T to all sites involved in T.

2. However, if the coordinator has received don’t  commit T  from one or 
more sites, it logs <Abort T>  at its site and then sends ab o rt T  mes­
sages to all sites involved in T.

3. If a site receives a commit T  message, it commits the component of T  at 
that site, logging <Commit T>  as it does.

4. If a site receives the message abort T, it aborts T and writes the log 
record < Abort T>.

The messages of phase 2 are summarized in Fig. 20.13.

Figure 20.13: Messages in phase 2 of two-phase commit

20.5.3 Recovery of Distributed Transactions
At any time during the two-phase commit process, a site may fail. We need 
to make sure that what happens when the site recovers is consistent with the
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global decision that was made about a distributed transaction T. There are 
several cases to consider, depending on the last log entry for T.

1. If the last log record for T  was <Coimnit T>,  then T  must have been 
committed by the coordinator. Depending on the log method used, it 
may be necessary to redo the component of T  at the recovering site.

2. If the last log record is < Abort T > , then similarly we know that the 
global decision was to abort T. If the log method requires it, we undo the 
component of T  at the recovering site.

3. If the last log record is <Don’t  commit T>,  then the site knows that the 
global decision must have been to abort T. If necessary, effects of T  on 
the local database are undone.

4. The hard case is when the last log record for T  is <Ready T>.  Now, the 
recovering site does not know whether the global decision was to commit 
or abort T. This site must communicate with at least one other site to 
find out the global decision for T. If the coordinator is up, the site can 
ask the coordinator. If the coordinator is not up at this time, some other 
site may be asked to consult its log to find out what happened to T. In 
the worst case, no other site can be contacted, and the local component 
of T  must be kept active until the commit/abort decision is determined.

5. It may also be the case that the local log has no records about T  that 
come from the actions of the two-phase commit protocol. If so, then the 
recovering site may unilaterally decide to abort its component of T, which 
is consistent with all logging methods. It is possible that the coordinator 
already detected a timeout from the failed site and decided to abort T. If 
the failure was brief, T may still be active at other sites, but it will never 
be inconsistent if the recovering site decides to abort its component of T 
and responds with don’t  commit T if later polled in phase 1.

The above analysis assumes that the failed site is not the coordinator. When 
the coordinator fails during a two-phase commit, new problems arise. First, the 
surviving participant sites must either wait for the coordinator to recover or 
elect a new coordinator. Since the coordinator could be down for an indefinite 
period, there is good motivation to elect a new leader, at least after a brief 
waiting period to see if the coordinator comes back up.

The m atter of leader election is in its own right a complex problem of dis­
tributed systems, beyond the scope of this book. However, a simple method 
will work in most situations. For instance, we may assume that all participant 
sites have unique identifying numbers, e.g., IP addresses. Each participant 
sends messages announcing its availability as leader to all the other sites, giv­
ing its identifying number. After a suitable length of time, each participant 
acknowledges as the new coordinator the lowest-numbered site from which it 
has heard, and sends messages to that effect to all the other sites. If all sites
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receive consistent messages, then there is a unique choice for new coordinator, 
and everyone knows about it. If there is inconsistency, or a surviving site has 
failed to respond, that too will be universally known, and the election starts 
over.

Now, the new leader polls the sites for information about each distributed 
transaction T. Each site reports the last record on its log concerning T,  if there 
is one. The possible cases are:

1. Some site has <Commit T>  on its log. Then the original coordinator 
must have wanted to send commit T  messages everywhere, and it is safe 
to commit T.

2. Similarly, if some site has < Abort T>  on its log, then the original coordi­
nator must have decided to abort T, and it is safe for the new coordinator 
to order that action.

3. Suppose now that no site has <Coimnit T>  or <Abort T>  on its log, but 
at least one site does not have <Ready T>  on its log. Then since actions 
are logged before the corresponding messages are sent, we know that the 
old coordinator never received ready T  from this site and therefore could 
not have decided to commit. It is safe for the new coordinator to decide 
to abort T.

4. The most problematic situation is when there is no <Commit T>  or 
< Abort T >  to be found, but every surviving site has <Ready T>.  Now, 
we cannot be sure whether the old coordinator found some reason to abort 
T  or not; it could have decided to do so because of actions at its own site, 
or because of a don’t  commit T  message from another failed site, for 
example. Or the old coordinator may have decided to commit T  and al­
ready committed its local component of T. Thus, the new coordinator is 
not able to decide whether to commit or abort T  and must wait until the 
original coordinator recovers. In real systems, the database administrator 
has the ability to intervene and manually force the waiting transaction 
components to finish. The result is a possible loss of atomicity, but the 
person executing the blocked transaction will be notified to take some 
appropriate compensating action.

20.5.4 Exercises for Section 20.5
! Exercise 20.5.1: Consider a transaction T  initiated at a home computer that 

asks bank B  to transfer $10,000 from an account at B  to an account at another 
bank C.

a) What are the components of distributed transaction T? What should the 
components at B  and C do?

b) What can go wrong if there is not $10,000 in the account at B ?



1014 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

c) What can go wrong if one or both banks’ computers crash, or if the 
network is disconnected?

d) If one of the problems suggested in (c) occurs, how could the transaction 
resume correctly when the computers and network resume operation?

E xercise 20.5 .2 : In this exercise, we need a notation for describing sequences 
of messages that can take place during a two-phase commit. Let (i,j, M ) mean 
that site i sends the message M  to site j ,  where the value of M  and its meaning 
can be P  (prepare), R  (ready), D (don’t  commit), C  (commit), or A  (abort). 
We shall discuss a simple situation in which site 0 is the coordinator, but not 
otherwise part of the transaction, and sites 1 and 2 are the components. For 
instance, the following is one possible sequence of messages that could take 
place during a successful commit of the transaction:

(0 ,1 ,P), (0 ,2 ,P),  (2 ,0 ,R),  (1,0 ,R),  (0 ,2 ,C), (0,1, C)

a) Give an example of a sequence of messages that could occur if site 1 wants 
to commit and site 2 wants to abort.

! b) How many possible sequences of messages such as the above are there, if 
the transaction successfully commits?

! c) If site 1 wants to commit, but site 2 does not, how many sequences of 
messages are there, assuming no failures occur?

! d) If site 1 wants to commit, but site 2 is down and does not respond to 
messages, how many sequences are there?

!! Exercise 20.5 .3 : Using the notation of Exercise 20.5.2, suppose the sites are 
a coordinator and n other sites that are the transaction components. As a 
function of n, how many sequences of messages are there if the transaction 
successfully commits?

20.6 Distributed Locking
In this section we shall see how to extend a locking scheduler to an environment 
where transactions are distributed and consist of components at several sites. 
We assume that lock tables are managed by individual sites, and that the 
component of a transaction at a site can request locks on the data elements 
only at that site.

When data is replicated, we must arrange that the copies of a single ele­
ment X  are changed in the same way by each transaction. This requirement 
introduces a distinction between locking the logical database element X  and 
locking one or more of the copies of X .  In this section, we shall offer a cost 
model for distributed locking algorithms that applies to both replicated and 
nonreplicated data. However, before introducing the model, let us consider an 
obvious (and sometimes adequate) solution to the problem of maintaining locks 
in a distributed database — centralized locking.


